HUMAN CALCIUM KINETICS STUDIED WITH ⁴¹CA DETECTED BY ACCELERATOR MASS SPECTROMETRY. Stewart P.H.T. Freeman¹, Janet C. King², Leslie R. Woodhouse², Nancy E. Vieira³ and Alfred L. Yergey³, ¹Lawrence Livermore Natl Lab, Livermore, CA 94551, ²Dept Nutr Sci, UCB, Berkeley, CA 94720, ³NICHD, Bethesda, MD 20892 The use of 41 Ca is particularly attractive as a tracer for human calcium metabolism because it is long lived ($t_{1/2} = 10^5$ yr), decays with the release of soft x rays, so rare (natural Ca is only 10^{-15} 41 Ca) and readily available (produced by neutron activation of 40 Ca). 41 Ca can be employed as a tracer when the other isotopes are precluded for physiological, radiological or economic reasons. A mass spectrometer based on a particle accelerator is necessary for the detection of 41 Ca at low-levels in order to obtain the necessary sensitivity and resolution from 41 K and other molecular interferences. We present preliminary data demonstrating the feasibility of measurements of bone resorption with a two week continuous tracer feeding protocol. (This work was performed under the auspices of the Department of Energy at the Lawrence Livermore National Laboratory under contract W-7405-Eng-48.)